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Abstract
A generalized model of an oscillator is considered, subject to the influence of

external waves. It is shown that the systems of diverse physical background,
encotnpdssed by this model, should belong by their nature to the broader class of 'kick-
excited self-adaptive dynamical systems". The theoretical treatment includes an analytic
approach to the conditions for emergence of small and large amplitudes, i.e. weak and
strong non-linearity of the system.

The article also considers the presence of a small horseshoe in the dynamics of a
particle under the action of two waves. Originally, the problem comes from the plasma
physics despite the existence of some other applications of the dffirential equation
studied here.

1. Introduction
Here, the generalized "oscillator-wave" model is considered and it is

shown that the inhomogeneous external influence is realized naturally and
does not require any specific conditions. The systems covered by the
"oscillation-waverr model immanently belong to the generalized class of
kick-excited self-adaptive dynamical systems [1-5]. Attempting maximal
clarity of the sequence of presentation, we consider the excitation of oscillations
in a nonJinear oscillator of the "pendulum" t5pe under the influence of an
incoming (fall) wave. We will show that, under certain condition, non-
attenuated oscillations will arise in the system with a frequency close to the
system's natural frequency and amplitude belonging to a defined discrete
spectrum of possible amplitudes. A second important quality also appears -
self-adaptive stability of the excited oscillations with given amplitude for a
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where Q is the frequency of free oscillations having anamplitude a,

=Clr-+.o@\f,aL8 I
Jn (') areBessel functions of the first kind, Fo = 

EQ 
.

m
The excitation of continuous oscillations with frequency @ = @, close

to the oscillator's natural frequency is only possible under the condition
)r:?a> l, where,l is the wavelength of the influencing wave. As result
2

of the interaction of the oscillator with the wave a frequency
components appears in the force spectrum that is close to its natural
oscillation frequency. Then the action of these spectral components
becomes dominant and the right-hand side of equation (1) attains the form:
ls
;un ^>: ^(ka)sin(vt - 

n0) =

-l- t- v I l- , l'l
= Fo7J, .(ka)sinl tt -(--1)a l- J, .(ka)sinl @t +(-+l)a lf tSlL;" L o J -*t L a J)

Under the condition v > a the resonance area of the nonlinear
oscillator can be entered by several spectral components of the exciting
wave each of which could excite the oscillator into stationary oscillations
with amplitude belonging to a discrete sequence of possible amplitudes.
For fixed parameters of the oscillator and the wave the excitation of
oscillations with amplitude from the possible sequence of amplitudes is
determined by the initial conditions. In accordance with relation (4), the
values of the discrete sequence of stationary amplitudes can be calculated
by the formula:

Averaging the right-hand side of equations (3) and taking into account
(5), we determine:

do,

dt
o?' :n' -'? -'" lr"-r(ko,)-/"*r (ka)lsin(pt - y,)
dt 2a, 2a"a. L r-r \ r' rr

= -5 aa * *lt,-r(t-,) +.r"*, (fra" )]sin

(6)

(pt - r,)
(7)

t2l



broad range of the incoming wave's intensity.
Leaving the details, the equation describing the motion of one particle in

two electrostatic waves allows perturbatiolir methods to be applied in its
study. There are three main types of behavior in the phase space - a limit
cycle, formation of a non-trivial bounded attracting set and escape to infinity of
the solutions. One of the goals is to determihe the basins of attraction and to
present a relevant bifircation diagram for the transitions between different
types of motion.

2. Model of the interaction of an os0illator with an electromagnetic
wave: approach applicable for small amplitfdes of the system's oscillations.

Let us consider the interaction of an elecifromagnetic wave with a weakly
dissipative nonlinear oscillator. Let the eldctric charge q having mass //t
oscillate along the x-axis under the influenqe of a nonJinear retuming force
around a certain fixed point. The electromagfletic wave also propagates along
the x-axis and has a longitudinal elecfic fiefd component E The equation of
motion for the charge interacting with the wave can be represented as:

m(i + 25 oi + atl sin x) = Eq sin(vt - tw) (1)

where 26a is the damping coefficient, ao i$ the natural frequency of small
oscillations of the charge, v is the wave frequency and k is the wave number.
The case considered is: v > as.

We assume that the excitation of charge oscillations by the influence
of the wave does not perturb significantllr the symmetry of the charge's
motion around its equilibrium position a4d the coordinate of the charge
changes according to the law

x=asin9, 0=att*d, a=a(t), a=a(t) (2)

obtain:

Eqsin(vt - trnsinl) = nqt l,(ka)sin(1t - ne) .

n=-@

Letting * = acoeos9, asin9 + ancos9 =0
in accordance with the Krilov-Bogolyubo!-Mitropolskii method [6], we
obtain to first order:

(3)

Substituting the solution (2) in the rig$t hand side of equation (1) we

4 =n' _- '' - L it,(ka)sin(vt - no)cosodt 2at co
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lvvywnefe P =v-- 11 Art T, =-d, @, F- .

asass
In accordance with the familiar reburrence relations for Bessel

functions, equations (7) can be represented n the form:

+ = -6aa, - * t,(ka,)sin(pt - y',)dt o:ko,
do, _a? - r? _ Fo 

J,,(lm,)cos(pt _7,)dt 2cD, a,a,

In the case of stationary oscillatiori s (4-=O'dt
equations (8) we frnd:

. 26oa"at'"k J'" (ko")
lft.t 

--ol s 
(o3 - at!)v t,1tca,1

The connection between the intensity of the wave's
longitudinal component and the amplitude of oscillations has the form:

4 :l o?"r?dorrl' *l o,"<a? - r:>l' 
." lrJ,(kn",) ) | 2J' , (ka"") )

(8)

a"d ff= o) from

(e)

For high intensities of the wave, equAtion (9) can be represented as:

. _o3"r?(o,-o,o)'. -SJ,ftu)
The first term in formula (9) represents the minimal threshold

value Fo of the wave's intensity. If the i4tensity of the wave is smaller
than this threshold value only the excitatlon of forced oscillations with
frequency equal to the wave's frequency is possible. For wave intensities
above the threshold value depending on the initial conditions, the
oscillator's motion is realized with one of the amplitudes from the discrete
sequence (6). When v ) coo each amplitpde is realized for oscillation
frequency close to the oscillator's natural frequency. Using the approach,
developed in [3], it is not difficult to show that for fixed values of the
frequency v and the amplitude F, of the external force the oscillator's
motion with amplitude from the discrete soquence (6) is stable.

The performed analysis shows that the continuous wave having a
frequency much larger than the frequency of a given oscillator can excite
in it oscillations with a frequency close tO its natural frequency and an
amplitude belonging to a discrete set of possible stable amplitudes.

The settling of certain particular ar)nplitude depends on the initial
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conditions. When the motion becomes stationary the amplitude's value
practically does not depend on the wave's intensity when the latter
changes over a significant range above a certain threshold value. This is
reminiscent of Einstein's explanation of the photoelectric effect using
Planck's qtantization hypothesis. In this case the absorption is also
independent of the incoming wave's intensity. Besides, the absorbed
frequencies can be expressed as integer multiples of a certain basic
frequency reminding of resonance phenomena.

3. Approach for large amplitudes of the oscillations in il
nonlinear dynamical system subjected to the influence of a wave

Let the nonlinear oscillator is an electric charge q withmass /?4 and it is
able to oscillate along the X-axis with a small friction force 26oX .Let an

electromagnetic wave propagating along the X-axis acts upon the oscillating
charge. Let us assume that the wave has a longitudinal component of the
electric field Ey. The equation of the charge motionbecomes

X +26oX +alsinX =Po sin(v/, -\il -e), (10)

where (Do is the resonant frequency of small amplitude

oscillations Po = E xQ I m; v, g and k are the frequency, the initial phase and

the wave number respectively, tris the real time. We assume V )) oo .

Let us introduce the dimensionless timet=@otr. In this case, Eq.

(10) takes the form

X +26aX +sinX=4 sin(f t-kX -q),,
0lo

where 26d =26o ltrr.o, Fo = P" laf,
In order to integrate the Eq. (1 1) with the methods of the Theory of

nonlinear oscillations, we apply the approach developed in [3, 7]. We
introduce a new variable v andnonlinear time r.

/ = slgn -r (r2)

.) 
Similar equations describe the behavior of cosmic charged particles in certain conditions, the

processes in radio-frequency driven, quantum-mechanical Josephsonjunctions, charge density wave
transport and other systems.

(l l)

=2sin!.2'
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So, the nonlinear reactive term sinX in the Eq.(ll) may
"excluded". The functions X(y) and GfO in (13) are easily expressed
taking into account (12)inthe form

dt -dx =G(r,)dr dy sin[x(y)]
(13)

(1 8)

be
by

(r4)

Substituting(12) and (13) in (11) we obtain
') ( t-. l- -. l)
:+. y =]-zao *+4 sinl *,r"1 - kx(y)-* liool (r5)
dr' | 

-d, - Lto JJ

The fi.rther consideration will be performed for the following
interval ofy values: -2<y<2.

Before the integration of the Eq. (15) we will mention, that the
solution will be quasi-harmonic with nominal frequency o, = V /.ly', where

nf>>l is a positive odd number, however an - @o. That is why we will
write the Eq. (15) in the following form:
s2" dv .[u l-3*F'y=-zsaA+d sinl *,(r)-kx(y)-q lcfyl+(p2 -1)y, (16)dr' - dr - Lcoo J

where B-1 corresponds to the difference from the resonant frequency.
We assume that in excitation of the charge oscillations by the wave

its motion is symmetric with respect to the equilibrium and the charge
coordinate changes in agreement with

l=RcosBr=RcoSV Q7)
The dependence of the normalized time / on the angle r;r can be

expressed in agreement with (13), (14) and (17) as

The normalized period of the oscillations is

t

,-l'" - p

t24
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where 
"f+) 

is a complete elliptic integral of first kind.
\2)

By use of (18) the coefficient B is expressed in the form

Now we can solve Equation (16).
The shortened (reduced) differential equations for the amplitude R

and phase q may be written as:

dR lzn
;= -frJz[n"ory,-BRsiny, e(\tt -g)]sinydy, (1e)

0

49 = -J-itl^cosy,-pn siny, e(rt -g)]cosydy, (20)dr zn| 
o

where

Z[R cosry,-BR sin y, e(y - tp)] = 267 BR sin y * !.r"f-If-l' 
/r - R2 I 4cos2 ty L2K(R|2) )

Let us introduce the following designations:

{:'} =u'n(" sin(rz)"o"lo1zyl["Y\o,, (21)
lHz) d " L "l"nZ)

{:'^I=*'^(" cos(rz)rinlogl{'*^-}* e2)lH4) d 
.- L "l"nz)

{i1I=*'^(" cos(rZ)"o,foqyd"Y\o, e3)lH6) d 
\ /---L\"l"nZ)

ffi ) 
=*'^ !" 

sin(rz)'i"t'(a{ Y*}' (24)

where Z = F (tV , R I 2) is an incomplete elliptic integral of the first kind,

D(z)=znElur"rin[4" rt),11, 
"r',', 

is an incomplete elliptic
r- \2 IR)

integral of second kind, snZ and cnZ are sine and cosine of the amplitude
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(the Jacobi elliptic functions),
lrN

'= zr7nr2.,'
Taking into account the expressions (21)-(24), the shortened

Equations (19) and (20) for establishing the amplitude R and phase <p take
the form

# = -u o 
^ 

- hfur- H3 )cos<p r (11s + H )sin e]

dq =- 
Fo

dr znBpl(Hr-F1a)cosrp - (H++Hs)sin<p]-G-D"

For the stationary mode (+=0, +=0) we obtain the following' 'dr dr
expressions for the established values of the pmplitude R and the phase q:

r,l(n, - H)(Ha - H) - (Hz j H+)(Hs + H)]
(2s)

o(Hr-H)-(Hz-H)12 +lo( s + H) -(He + H)]'
..._a(Hr-Hz)-(Hz-Hq)

,' - 
et v&A 

-

o(Hs+Ht)-(Ha+Hs)
where o = (F _D l6d .

(26)

4. Presence of a small horseshoe in the dynamics of a particle
under the action of two waves

Originally the problem comes from plpsma physics [8] even though
that there exist and some other applications of the differential equation
which we shall study. Leaving the details, the equation which
describes the motion of one particle in two electrostatic waves is given
bv

i=-Msinx-Psin(x-l), (27)
where x is the position of the particle measured in the frame of one of
the waves, P and M are dimensionless amplitudes of the waves. We
shall extend our model introducing a damping term in (27), and we
shall also assume that P << M. Under those assumptions the equation
that governs the motion of the particle can be written as

i + aEi + sin x = qf sin(vt - x), (2S)
where x is again the position of the partible measured in the frame of
one of the waves, whereas 6, f and v ate teal non-negative constants.
The form of the equation allows perturbafion methods to be applied in
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its study. Our preliminary numerical investigation of (28) revealed very
rich dynamics depending on the change of parameters and initial
conditions. There are three main types of behaviour in the phase space
of(28) that can be observed:

. Approaching a limit cycle;

. Formation of a non-trivial bounded attracting set;

. Escape to infinity of the solutions of (28).

One question which is of natural interest here, is to determine the
basins of attraction, and to present a relevant bifurcation diagram for
the transitions between different types of motion. Although that there
has been reached a significant progress in the understanding of the
behavior of driven non-linear oscillators, there exist some obstacles that
prevent clarifying the dynamics of particular examples. In our work
we present a rigorous result for existence of horseshoe-like dynamics
for (28) and hence for exhibiting the phenomena deterministic chaos. our
result is as follows;

Theorem 1. The sufficient conditions for transition to
chaotic motion in the dynamics of equality (28) is fulfillment of

(2e)

(30)

The organization of our study is as follows: In next section we
shall give a short account of the Melnikov method in form convenient
for our problem. Then we shall prove Theorem l. In the last section we
shall say some words on the physical implication of our result.

4.1. Short summary of the Melnikov method
We shall explain the Melnikov technique following [9].

A. General assumptions and geometric structure of the
non-perturbed system.

Consider the system of differential equations
ic: JD,H(x) + eg(x,t,e) (3 1)
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where (x,t) e R2 xTl

,=[o tl.
L-t 0l

and J is the slymplectic matrix defined by

We get the following structural assumptilons:
l. The functions

JD,H:R2 +R'
g:R2xRxR-)R"

are defined and at \east C2 differentiable on their respective domains of
definition, andthat g is periodic in r with ppriod T =2n / a.

2.The system (31) with E :0 is referred as unperturbed system.
About it we shall assume that it possesses a hyperbolic fixed point xo,o

connected to itself by a homoclinic orbit xr(t)=(x!(t),xl(t)1.
3.LeI denote by W"(",,r) the set of points xeRz that approach

x,,h as t-+a, andby W"(xo,) the set df points xeR2 that approach

x',h as t ) -6 , under the action of the urlperturbed flow

*= JD,H(x) (32)

W'(xr,o) is referred as asymptotically stable manifuld for xr,r, and

W'(xo,o) is referred as asymptotically uns'table manifold for xr,o. Denote

by 1,".n ={r. n' l* : *oQ),t en}u {ro,n \=W' (*0,) 
^Wu 

(*0,)t {ro,n }.
We shall assume that interior of Il,.o is filled with continuous family of
periodic orbits x" (t) of (32) with period To , a el-1,0) and

Lig*" (t)= xo(t) and ligT" =*.
When viewed in three-dimensional space
point xo., turns to hyperbolic periodic orbit

the system
* = JD,H(x)

0=a
and so do W'(xo,) and W" (xr,o) which turn to two-dimensional

asymptotic manifolds W'(y(t)) and Wu (y(t)) which coincide along the

two-dimensional homoclinic manifold

t28
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(33)



lr<,t=l@,qeRz xslx= xoQ),re Rlu{ro,o *s}.

B. Geometric structure of the perturbed phase
sp ace.

Here we shall argue that most of the upper structure goes over for
the perturbed system.

*=JD,H(x)+q(x,0,e)
0:a

Proposition l. For e sufficiently small the periodic orbit y(t) of (7)
survives as a periodic orbit,y"(t)=y(t)+O(e), of Q$ having the same

stability type as y(t), and depending on e in a C2 manner. Moreover,

the local stable and unstable manifolds Wi"(y"(t)) and W,i"(y"(t)) of y"(t)
remain also C2 e -close to the local stable and unstable manifolds
Wi"@(t)) and W,i"(f@) of fQ), respectively.

Remark 1. The concept for local stable and unstable
manifulds becomes clear when one represents the stable and unstable
manifulds of the hyperbolic fixed point (periodic orbit) locally. For
details see [9] or ll0l.

Now, the global stable and unstable manifolds of y"(t) are

w' (y 
"0) = U (*, o)' Qo;"(y " 

(D)),
,<0

w" (T 
"(r) = [J {r ,o),@1"@ "(t))),>0

where we denote by (x,0)' the phase flow of (34).

Consider the following cross-section of the plane R2 x 
^S

@0" -l@,q.R'lo=0"|.
@d' is parallel to the x-plane (and coincides with the x-plane for 0, =Q).
Note that y(t) 

^@e' 
- xo,o and l, A@4 = {, = 

R' l* = xo,h,/ e R}= \,., .

Consider a ftajectory
(x"Q),oQ)), (3s)

(34)

of the perturbed.vector field (34). Then its projection onto @d, is given by
(x,1t),0")=w'(r,@)(\w"(r,O). since x,(t) actually depends on e"
(as opposed to x(r), for some solutions (x"(t),O(t) of (34)), the
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perturbed vector field (3a) is non-autondmous, which may result in a
very complicated picture of (35) in @d,, possibly intersecting itself. The
points from the Poincare m?p P, defined as the successive points of
intersection of the solution (x,1t1,eg) wlttr @4, , will be mapped also
onto this curve. It turns out that these points can form very
complicated (non-trivial) sets due to trpnsversal intersection of the
asymptotic manifolds W'(y,Q)\ and W"(f,Q)\. One computable
criterion that assures such dynamics is giVen by:

Proposition 2.ll9l Suppose that we have a point (to,0) = (to,0o)
such that

1. M(7",0o)=0,

^ aMl2.-l *0,
ot o lG.,e.>

where M(to,0,) is the Melnilmv vector

M (t o, e.7 = lou(x, (r)).g(x, (t), cot I 0.,01dt

, Then ,'0-6\ and Wu(r,(t)\ intqrsect transversety at
l*n(t") + O(a),O") and consequently (rAm the Smale-Birkhoff
homoclinic theorem) for the map P, there pxists an integer n > |
that Pi has an invariant Cantor set on which it is topologically
conjugate to afull shift of N symbols.

C. Proof of Theorem 1.

Consider equation (28) written id the form
i;r =x2,
i2 =sinx1 + el-6xz + f sin(0 - xt)],

0 =v.
Then the following lemma holds:

Lemma l. For e :0 system (36) contd,ins hyperbolic periodic orbit

u =6,,*,o1ty)=(r r,o,vt \ o")eR2 xT1 .

This orbit is connected to itself by a pair of 2ldimensional homoclinic
manifulds given by

(36)
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/r.. ... -..\ ( 7 \
(xi(r), x;(t),0(t11=[r 2arcsin(tanh(r -t")),t;;frT,vt * 0o 

).e7)
Proof. We easily see that (+ x,0) is a hyperbolic fixed point of

iil =x2, *'=sinxl ,linearizing (36) (for e : 0) about it. A trivial
check gives that (for e:0) (37) in solution of (36). Furthermore,
using asymptotic of (3 7) we obtain that it connects (* n,0,vt + 0.)
to itself. This proves the lemma.

Using Proposition 2 and hyperbolicity of (37), we conclude
that for E + 0, (37) turn odic, orbit which we
shall shortly denote by +O(e),vt*0").. fro4
Proposition 2,it follows manifolds W'(y,*(t)l
and W'\f".*(t)) will inte nsversely if the corresponding
Melnikov vector

M r(to,0o,6, f ,v) =

= j[- 66?,,,<, -, ))' + /sin(vr | 0o - x,o,*(t - t )b|*1t - t 
"yfot 

=

= 

{- 
r{-#-) . r(a#4lsin(vr + e" r 2arcsin(tarhr, -, "rrlr,,

has a simple zero. Furthermore we ftx 0 = 0,, whichdefines the cross-

section

@e' - {(*r,rr,e)le = 0o €10,2n)\,

and consider the Poincare map P!': @0" +@d, generated by the flow
(36). In order to make the conclusions we pursue about the dynamics of
P:" we need to compute M+(to,0o,6,f ,v). After some algebra we

obtain for M -
M *(t ", 

0 o, 6, f ,v) = -8d + 2 f sin(vt, + 0 ") lI, + 21 21,
where

, ?t - sinhz r -r sinh e11= | . . cos(vr)dt=v l---:-;-srn(vr)dr,_; cosn- z _:cosh- t
- ?sinhr v*nlsinhz
I z : l- --sn\vr)dt =: l- - 

cos(vc)dt .- _lcosh'e 2 _r*cosh't
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The integrals 4 and 12 are evalua
The standard calculation gives

by the methods of residues.tqd

I,= D : and' cosh(n l2)'
Hence, for the Melnikov vector M *'We obtain

M *(t ",0o, 
d, f ,v) =-8d + rf^'l#, 

D= # ,,-l 
sin(vr, + 0.)

(38)
Then fulfillment of (3) assures existence of simple zero for

M*(to,9o,5,-f ,v)=0,
and hence transversal intersection of the asymptotically stable manifold
W'(y,,*) and asymptotically unstable manifold W'(y,.*), whereas the

fulfillment of (30) assures existence of simple zero for
M _(t",0o,6, f ,v)=o

and hence transversal intersection of W'(f 
",_) 

and Wu(f",_). Now, from

Proposition 2 it follows for e > 0 sufficiently small there exists an
integer n > | such that the map P:" has an invariant Cantor set,

subset of the Poincare section @d,, on which the power 1f!.) is

conjugate to a full shift of Nsymbols.
The last implies that high sensitiveness of solution to the

choice of initial conditions, or equivalently deterministic chaos.

5. Conclusion
The analysis shows the following two essential features of the system

considered.
l. There exists a discrete set of possible stationary stable amplitudes,

which can be approximately determined under certunconditions.
2. There exists a threshold value for the amplitude such that for values

above it the discrete states are stable.
The phenomenon of continuous oscillation excitation with amplitude

belonging to a discrete set of stationary amplitudes has been demonstrated
on the basis of a common model - an oscillator under wave influence. It is
shown that the conditions necessary for the manifestation of this
phenomenon are rcalized in a natural way in an oscillator system interacting
with a continuous electromagnetic wave.

Modeling the system of an oscillating charge under wave influence has
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been considered. It has been shown that the continuous wave with spectral
components, considerably higher than the oscillating charge's natural
frequency, excites charge oscillations with a quasi-natural frequency and
amplitude belonging to a discrete set of the possible stationary amplitudes,
depending only on the initial conditions. The considered model may be used
for phenomenological investigation of plasma particles with electromagnetic
waves interactions and waves in the Earth ionosphere and planetary
magnetospheres.

In fact the main consequence of Theorem 1 is the strong dependence
of the solution of (28) on the choice of initial conditions. The
phenomenon deterministic chaos arises often in the dynamics of the
driven non-linear oscillators. In this regard our result is not surprising.
Anyway, we think that it is useful to present such a condition for the
parameters of the system which guarantees appearance of a Smale
horseshoe like dynamics, since usually the homoclinic bifurcation (due to
a simple zero of the Melnikov vector) is one of the first bifurcations that
occur in the transition from regular to irregular motion for a given
system. We want to emphasis that the homoclinic tangency (predicted
with a good accuracy by the Melnikov analysis), as a rule, implies
formation of a fraclal boundary for the basins of attraction. The last
makes difficult clarifying the global dynamics on specifrc examples.
The other two types of motion, outlined in section 4, are treated by the
means of the averaging theory using a sub-harmonic Melnikov function.
Our results are subject to a forthcoming paper.
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ocw-BbJrHoBMoruJr
KATO HEXOMOTEHHO BOruHA ruilIAn/flFilIA

CI,ICTEMA

Bnadawp.,[auzoe, Huonati Epoxun, IlnaueuTpenvee

Perroue

Pasrne4an e o6o6uleH MoAeJr Ha ocr[,rJrarop, HaM4parq ce rroA
BbHIrrHo BbJrHoBo Bb3Aefisrtsr{e. floxasano e, qe cucreMu c pa3Jrnrrna t[nsu.recra
IIp4poAa, o6e4rrmanu or ro3rr MoAeJr, npuHaAilexar r(bM no-o6ll[{r K[ac I'rom-

nr:6y4nm caMo-a4amrrBru Al[raMrrHrr c[gr€Mr{tt. Teopemlurono
pa3nrexAalre BKJrrorrBa aHaJrr{3 B ycJroB}IrrTa Ha foJreMr{ }r MarrKr,r ztMrrJrpfiy&r, T.e.

cnyqailTe Ha cwrna *r cna6a HeJrr,rHefuocT Ha cr{cTeMata. C;Itr,,Tlrlxla paTJrex[a
cbnlo HaJrrrilrero Ha aar(a HapeqeHara trol6opa na Cuefin B ,UlrraMr{Kara Ha
qasr[ilIa, Harvfllpa4a ce noA BBAeficrtsr,rsr0 Ha ABe BbJrH]r. Tosr,r npo6.neM r,rpa
ot (pusurara Ha rura3Mara, Ho 4r(bepernganrirtrre ypaBHeHr{r, pa3ilrexAaH}r B

C'rwfrrtraD wMaT v MHoxegrBo Apynr nplrJro)KeHnf, .
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