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Abstract

A4 generalized model of an oscillator is considered, subject to the influence of
external waves. It is shown that the systems of diverse physical background,
encompassed by this model, should belong by their nature to the broader class of "kick-
excited self-adaptive dynamical systems". The theoretical treatment includes an analytic
approach to the conditions for emergence of small and large amplitudes, i.e. weak and
strong non-linearity of the system.

The article also considers the presence of a small horseshoe in the dynamics of a
particle under the action of two waves. Originally, the problem comes from the plasma
physics despite the existence of some other applications of the differential equation
studied here.

1. Introduction

Here, the generalized "oscillator-wave" model is considered and it is
shown that the inhomogeneous external influence is realized naturally and
does not require any specific conditions. The systems covered by the
"oscillation-wave" model immanently belong to the generalized class of
kick-excited self-adaptive dynamical systems [1-5]. Attempting maximal
clarity of the sequence of presentation, we consider the excitation of oscillations
in a non-linear oscillator of the "pendulum” type under the influence of an
incoming (fall} wave. We will show that, under certain condition, non-
attenuated oscillations will arise in the system with a frequency close to the
system’s natural frequency and amplitude belonging to a defined discrete
spectrum of possible amplitudes. A second important quality also appears -
self-adaptive stability of the excited oscillations with given amplitude for a
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where ) is the frequency of free oscillations having an amplitude a,

2 2
q = 2@ ) = af{l £ 4 O(a‘)} ,
a 8
. . Eq
Jx () are Bessel functions of the first kind, F, =—.
m

The excitation of continuous oscillations with frequency w = @, close
to the oscillator's natural frequency is only possible under the condition

2 . . .
—;za >1, where 4 is the wavelength of the influencing wave. As result

of the interaction of the oscillator with the wave a frequency
components appears in the force spectrum that is close to its natural
oscillation frequency. Then the action of these spectral components
becomes dominant and the right-hand side of equation (1) attains the form:

—I—Eq Z.In(ka)sin(vr —nf) =
n

H=—0a

=F, {J, l(ka)sin[an‘ - % = I)a:| ~J, (ka)sin[a)z + (i + I)a]} )

Under the condition v > @ the resonance area of the nonlinear
oscillator can be entered by several spectral components of the exciting
wave each of which could excite the oscillator into stationary oscillations
with amplitude belonging to a discrete sequence of possible amplitudes.
For fixed parameters of the oscillator and the wave the excitation of
oscillations with amplitude from the possible sequence of amplitudes is
determined by the initial conditions. In accordance with relation (4), the
values of the discrete sequence of stationary amplitudes can be calculated
by the formula:

2

Averaging the right-hand side of equations (3) and taking into account
(5), we determine:

da F X
L= —§a+—[J _ (ka))+ ], (ka,)]sin(pr — 7,)
dt 2, el
dee. Q'-w® F ) ’
: = S0 [J(ka,) I, (ka)]sin(pt - 7,)
dt 20, 20,4,
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broad range of the incoming wave's intensity.

Leaving the details, the equation describing the motion of one particle in
two electrostatic waves allows perturbation methods to be applied in its
study. There are three main fypes of behavior in the phase space - a limit
cycle, formation of a non-trivial bounded attracting set and escape fo infinity of
the solutions. One of the goals is to determine the basins of attraction and to
present a relevant bifurcation diagram for the transitions between different
types of motion.,

2, Model of the interaction of an oscillator with an electromagnetic
wave: approach applicable for small amplitudes of the system's oscillations.
Let us consider the interaction of an electromagnetic wave with a weakly
dissipative nonlinear oscillator. Let the electric charge ¢ having mass m
oscillate along the x-axis under the influence of a non-linear returning force
around a certain fixed point. The electromagnetic wave also propagates along
the x-axis and has a longitudinal electric field component E, The equation of
motion for the charge interacting with the wave can be represented as:

m(% +26,% + @’ sin x) = Egsin{vt — kx) (1)
where 29, is the damping coefficient, wy is the natural frequency of small

oscillations of the charge, v is the wave frequency and & is the wave number.
The case considered is: v » wq.

We assume that the excitation of charge oscillations by the influence
of the wave does not perturb significantly the symmetry of the charge's
motion around its equilibrium position and the coordinate of the charge
changes according to the law

x=asing, f=wt+a, a=alt), a=afl) (2)

Substituting the solution (2) in the right hand side of equation (1} we
obtain;

Eqsin{vt — kasin0) = Eq Y J, (ka)sin(vi—n8),

Letting x = awcosf, asinf+aucosf =0
in accordance with the Krilov-Bogolyubov-Mitropolskii method [6], we
obtain to first order:

% =-20,a+ ot ZJ” (ka)sin(vt —n6)cos
D e
2 .2 ”:"w w (3)
‘;‘;‘ -8 2a)m —%Z;OJ (ka)sin(vi — n@)cosf
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v v v
where p=v——=<<wo,, 7, =—a, o, =—.
o, A s

In accordance with the familiar recurrence relations for Bessel
functions, equations (7) can be represented in the form:

dt K 8
s I oy <] J'_ ka ! —
dr 20, a " (ka,}cos(pt~7,)

. ir d
In the case of stationary oscillations (@3'— =0 and % =() from

equations (8) we find:
fg}’ n 2§daswszk J',s' (kav)
TRl -elp J,Ga)
The connection between the intensity of the wave's
longitudinal component and the amplitude of oscillations has the form:

e :[afoa)fﬁdk}z _{am(Qf -cof)]z_ ©
v/ (ka,,) 2J" (kay,)
For high intensities of the wave, equation (9) can be represented as:
a,; (4, ~a,
© 8, (kay)

The first term in formula (9} represents the minimal threshold
value F, of the wave's intensity. If the intensity of the wave is smaller
than this threshold value only the excitation of forced oscillations with
frequency equal to the wave's frequency is possible. For wave intensities
above the threshold value depending on the initial conditions, the
oscillator's motion is realized with one of the amplitudes from the discrete
sequence (6). When v > wg each amplitude is realized for oscillation
frequency close to the oscillator's natural frequency. Using the approach,
developed in [3], it is not difficult to show that for fixed values of the
frequency v and the amplitude F, of the external force the oscillator'’s
motion with amplitude from the discrete sequence (6) is stable.

The performed analysis shows that the continuous wave having a
frequency much larger than the frequency of a given oscillator can excite
in it oscillations with a frequency close to its natural frequency and an
amplitude belonging to a discrete set of possible stable amplitudes.

The settling of certain particular amplitude depends on the initial
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conditions. When the motion becomes stationary the amplitude’s value
practically does not depend on the wave's intensity when the latter
changes over a significant range above a certain threshold value. This is
reminiscent of Einstein's explanation of the photoelectric effect using
Planck's quantization hypothesis. In this case the absorption is also
independent of the incoming wave's intensity. Besides, the absorbed
frequencies can be expressed as integer multiples of a certain basic
frequency reminding of resonance phenomena,

3. Approach for large amplitudes of the oscillations in a
nonlinear dynamical system subjected to the influence of a wave

Let the nonlinear oscillator is an electric charge ¢ with mass m and it is

able to oscillate along the X-axis with a small friction force 28,X . Let an

electromagnetic wave propagating along the X-axis acts upon the oscillating
charge. Let us assume that the wave has a longitudinal component of the
electric field £ . The equation of the charge motion becomes
X +28,X +0>sin X = P, sin(vt, — kX — ¢), (10)
where ®, is the resonant frequency of small amplitude
oscillations P, = E yq / m ; v, ¢ and k are the frequency, the initial phase and
the wave number respectively, ¢, is the real time. We assume v>>®,, .

Let us introduce the dimensionless time?=w,¢, . In this case, Eq.
{10) takes the form
X +28,X +sinX =F, sin(mlr—kX—@,') (11)
where 28, =23,/w,, F, =P, /o>

In order to integrate the Eq. (11) with the methods of the Theory of
nonlinear oscillations, we apply the approach developed in [3, 7]. We
introduce a new variable y and nonlinear time z,

y=signx_|2 sinx'dx'=23in%, (12)

") Similar equations describe the behavior of cosmic charged particles in certain conditions, the
processes in radio-frequency driven, quantum-mechanicat Josephson junctions, charge density wave
transport and other systems.
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d B g (13

dr dy sinfX(y)]

S0, the nonlinear reactive term sin X in the Eq. (11) may be
“excluded”. The functions X(y) and G(y) in (13) are easily expressed by
taking into account (12) in the form

X(y)=2 arcsin[g—], G(y)= o 1 (14)

[
4
Substituting (12} and (13) in (11) we obtain
i
i—yw: —26d@+FO sin| ——#(2) - kX () — 0 |VG(3) (15)
d‘fz d’r (Do

The further consideration will be performed for the following
interval of y values: -2<y<2,

Before the integration of the Eq. (15) we will mention, that the
solution will be quasi-harmonic with nominal frequency ®, =v/N , where

N>>1 is a positive odd number, however ®, ~®,. That is why we will
write the Eq. (15) in the following form:

d* d v

£ iply=-28,21F, sm[b—r(r)th(y)—cpJG(yn ®% -1y, 16
dat dt @,

where B~1 corresponds to the difference from the resonant frequency.

We assume that in excitation of the charge oscillations by the wave
its motion is symmetric with respect to the equilibrium and the charge
coordinate changes in agreement with

y=RcosPt=Rcosy {17)

The dependence of the normalized time ¢ on the angle y can be
expressed in agreement with {13}, (14) and (17) as

1Y d¥

T :l d¥ =EK(£), (18)
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where K (%) is a complete elliptic integral of first kind.

By use of (18) the coefficient B is expressed in the form

b= nw, N

Now we can solve Equation (16).
The shortened (reduced) differential equations for the amplitude R

and phase ¢ may be written as:

AR 17
—_—=—— I L[R cosy,~BRsiny, e(y — (p):lsin ydy, (19)
dt  2ap g
d 1 2n
@ L[R cosy,—PBRsiny,e(w — (p)]cos vdy,  (20)
dr 27p G
where
F N
L[R cosys,—BRsiny, ey — @)= 28 ,BRsiny + < sir{ ]
JI—R2f4coszt|1 2K(R/2)
Let us introduce the following designations:
H K&I2) snZ
{H;} - {! sin(rZ)cos[D(Z)]{an}dz , @21
K(R/2)
H nZ
{HZ} = 6[ cos(rZ) sin[D(Z)]{znZ}dZ (22)
51 _ costzycolp ™ az (23)
= cos(rZ)cos
H6 g cnZ
Hy] M in(rZ)sin[D(Z) sz (24)
yg{= |} sm(Z)sin 2

where Z = F(y, R/2) is an incomplete elliptic integral of the first kind,

D(Zy=2kE arcsir\[gan],%} E[-,;-] i1s an incomplete elliptic

intcgral of second kind, snZ and ¢nZ are sine and cosine of the amplitude
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(the Jacobi elliptic functions),
.
2K(R/2)

Taking into account the expressions (21)-(24), the shortened

Equations (19) and (20) for establishing the amplitude R and phase ¢ take
the form

dR F .

=~ Oak- 27:3[(H1 — Hj Jeos o~ (Hjs + Hy)sin g}

do £, .

i Hy —Hylcoso—(Hg + He)sino|—{B-1)..

2 ZnBR[( 2 —Hy)cos@— (Hg + Hg)sing| - (B-1)

For the stationary mode (i—R =0, ? =0 ) we obtain the following
T T

expressions for the established values of the amplitude R and the phase o:
Fol(H\ — Hy)(H — Hy) — (H, ~ Hy)(Hs + Hy)| 25)
27Tl35\/[°'(H1 —Hy) = (Hy —H)F +[o(Hs + Hy) - (Hy + Hy)[*
(p=arctgG(HI_H3)_(H2_H4) 26)
o(Hs + Hy) - (Hg + Hyg)
where o=(B~-1)/8,.

R=

4. Presence of a small horseshoe in the dynamics of a particle

under the action of two waves
Originally the problem comes from plasma physics [8] even though

that there exist and some other applications of the differential equation
which we shall study. Leaving the details, the equation which
describes the motion of one particle in two electrostatic waves is given
by

Xx=—Msinx— Psin{x —{), (27)
where x is the position of the particle measured in the frame of one of
the waves, P and M are dimensionless amplitudes of the waves. We
shall extend our model introducing a damping term in (27), and we
shall also assume that P << M. Under these assumptions the equation
that governs the motion of the particle can be written as

X + g0x + sin x = gf sin(vt — x), (28)
where x is again the position of the particle measured in the frame of
one of the waves, whereas &, f and v are real non-negative constants.
The form of the equation allows perturbation methods to be applied in
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its study. Our preliminary numerical investigation of {28) revealed very
rich dynamics depending on the change of parameters and initial
conditions. There are three main types of behaviour in the phase space
of (28) that can be observed:

» Approaching a limit cycle;
» Formation of a non-trivial bounded attracting set;
* Escape to infinity of the solutions of (28).

One question which is of natural interest here, is to determine the
basins of atfraction, and to present a relevant bifurcation diagram for
the transitions between different types of motion. Although that there
has been reached a significant progress in the understanding of the
behavior of driven non-linear oscillators, there exist some obstacles that
prevent clarifying the dynamics of particular examples. In our work
we present a rigorous result for existence of horseshoe-like dynamics
for (28) and hence for exhibiting the phenomena deterministic chaos. Our
result is as follows:

Theorem 1. The sufficient conditions for transition to
chaotic motion in the dynamics of equality (28) is fulfillment of

( 1 1

46 < fmv’ —— , (29)
\ cosh(zv/2) sinh(zv/2)
or
46 < fa® I +— 1 ‘ (30}
\ cosh(zv/2) sinh(zv/2)

The organization of our study is as follows: In next section we
shall give a short account of the Melnikov method in form convenient
for our problem. Then we shall prove Theorem 1. In the last section we
shall say some words on the physical implication of our result.

4.1. Short summary of the Melnikov method
We shall explain the Melnikov technique following [9].

A. General assumptions and geometric structure of the
non-perturbed system,
Consider the system of differential equations
x=JD H{x)+ eg(x,t,&) (31)
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where (x,f)e R*xT' and J is the symplectic matrix defined by

Jz[fl :J

We get the following structural assumptions:
1. The functions

JD.H:R* > R*
g:R2xRxR—R>
are defined and at least C? differentiable on their respective domains of
definition, and that g is periodic in ¢ with period T =27z /@ .
2. The system (31) with ¢ = 0 is referred as unperturbed system.
About it we shall assume that it possesses a hyperbolic fixed point x,,

connected to itself by a homoclinic orbit x,(f) = (x; (£}, x; (£)) .

3. Let denote by W7 (x,,) the set of points x€ R’ that approach
Xy, 88 £, and by W¥(x,,) the set of points xe R” that approach
X,, @ { > -, under the action of the unperturbed flow

x=JD _H(x) (32)

Wi(x,,) is referred as asymptotically stable manifold for x,,, and
W*{(x,,) is referred as asymptotically unstable manifold for x,,. Denote
by T, =xeR®|x=x,0,1eRH0 g, =W (x0,) AW () U fro, )
We shall assume that interior of I, is filled with continuous family of
periodic orbits x*(f) of (32) with period T%, ae[-1,0] and
Li_r:{a}x“ {t)=x,(t) and lal_% T% =00,

When viewed in three-dimensional space R’ xS, the hyperbolic fixed
point x,, turns to hyperbolic periodic orbit y(¢) = (xo_},,é’(r) =t + a)a) of

the system
i=JD H(x) 33)
b=w

and so do W'(x,,) and W¥(x,,) which turn to two-dimensional

asymptotic manifolds W' (y(f}) and W " (¥(t)} which coincide along the
two-dimensional homoclinic manifold
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T, ={x.0)e R xS|x=x,(),t e R} fx, , x S}.

B. Geometrie structure of the perturbed phase
space.

Here we shall argue that most of the upper structure goes over for
the perturbed system.

x=JD _H(x}+ &3(x,86,¢8)
b=w
Propeosition 1. For ¢ sufficiently small the periodic orbit ¥(t) of (7)
survives as a periodic orbit, y_(£)=y(t)+ O(e), of (34) having the same

(34)

stability type as y(t), and depending on £ in a C’ manner. Moreover,
the local stable and unstable manifolds W, {y ()} and W, (y.(£)) of ¥ . (1)

remain also C? g-close to the local stable and unstable manifolds
Wi (7)) and Wi (r(®) of 7(6), respectively.

Remark 1. The concept for local stable and unstable
manifolds becomes clear when one represents the stable and unstable
manifolds of the hyperbolic fixed point (periodic orbit) locally. For
details see [9] or [10].

Now, the global stable and unstable manifolds of y, (¢} are

W ) = 5. 0 7, (7, (00),

150

&, )=\ 8) 7 (. ()

t=0
where we denote by (x,6) the phase flow of (34).
Consider the following cross-section of the plane R? x §
®% ={(x,0)c R* |6=4,}.
®% is parallel to the x-plane (and coincides with the x-plane for g, =0).
Note that y(f) "®% =x,, and I, n@% = {x eR’|x=x,,,te R}= r

o.h )
Consider a trajectory

(x, (1), 6()), (35)

of the perturbed vector field (34). Then its projection onto ®% is given by
(x, 0,6 )=w(y.O))Ww* 7,()). Since x (1) actually depends on 6,
(as opposed to x(f), for some solutions {x,(1),8(¢) of (34)), the
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perturbed vector field {34) is non-autonomous, which may result in a
very complicated picture of (35) in ®% , possibly intersecting itself. The
points from the Poincare map P, defined as the successive points of
intersection of the solution (x,(¢),6()) with ®%, will be mapped also
onto this curve. It turns out that these points can form very
complicated (non-trivial) sets due to fransversal intersection of the
asymptotic manifolds W*(y.(z)) and W*{y,(:)). One computable
criterion that assures such dynamics is given by:

Proposition 2. [19] Suppose that we have a point (t,,6,)=(Z,,6,)
such that

1. M@,,6)=0,
2, @/{ =0,
o1, {1,:8,)

where M(t,,6,) is the Melnikov vecior

M@,,6,)= ?DH G, (D)9, (O), @t + 8, ,0)dt

Then W‘(}_@__ ) and W*{y_(t)} intersect transversely at
(xb (~t,)+0(),8,} and consequently (from the Smale-Birkhoff
homoclinic theorem) for the map P, there exists an integer n > 1
that P has an invariant Cantor set on which it is topologically
conjugate to a full shift of N symbols.

C. Proof of Theorem 1.

Consider equation (28) written in the form

' =x?,
% =sinx' + g[-&* + fsin(@—x")], (36)
f=v.

Then the following lemma holds:
Lemma 1. For & = 0 system (36} contains hyperbolic periodic orbit
M=(3,%2,60))=(+7,0,vt+6,)e R? xT".

This orbit is connected to itself by a pair of 2-dimensional homoclinic
manifolds given by
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(xi (6), x2(5), 9(t))= (i 2 arcsin{tanh(f —¢_}),+ VE+ 6, ) (37)

cosh{f —¢ )
Proof. We easily see that (+x,0) is a hyperbolic fixed point of

2

i'=x?, x*=sinx',linearizing (36) (for £ = 0) about it. A trivial

check gives that (for ¢ = 0) (37) in solution of (36). Furthermore,
using asymptotic of (37) we obtain that it connects (£ 7,0,v+8))
to itself. This proves the lemma.

Using Proposition 2 and hyperbolicity of (37), we conclude
that for £ # 0, (37) turns to hyperbolic periodic, orbit which we
shall shortly denote by y,.(1)=(*7+0(£),0+O(e), vt +8, ). From
Proposition 2 it follows that its asymptotic manifolds W*{y_, (1)
and W'y, ,.(t)} will intersect transversely if the corresponding
Melnikov vector

Mi(to’go’é"f)v):

= o]:—&(x,fi (t —rg))2 +f sin(vt+ 8, —x, . (t ‘fo))’f;,i (t—1, )]d; =

2 Y +2 : ,
- 5( cosh(t 7, )) +f (m] sin{vt + @, + 2arcsin(tarh(t — ¢, )})) |dt.

has a simple zero. Furthermore we fix 6= &, , which defines the cross-

Il
§ Cmmy 8

section

0% ={(x,,x,,6)|6=6, <[0,2m)},
and consider the Poincare map P%: @% - ®@% generated by the flow
{36). In order to make the conclusions we pursue about the dynamics of
P% we need to compute M {t,,8,,0,f,v). After some algebra we

£

obtain for M,
M. (t,,6,.8,f,v)=-86£2fsin{vt, +8,) [I, F21,],

where
“t1—sinh’ " sinhz
5= I—wms(vr)drz v I = : sin(vz)dr,
* cosh’ r ~cosh® 1

0

% sinhr . v “¢lsinht
I, = si{ve)dt =— cos(vridr.
? _I cosh® ¢ {ve) 2 _lcosh2 T @)

L]

131



The integrals J; and I; are evaluated by the methods of residues.

The standard calculation gives

7[\?2 7WZ

j=—————; and I,=————.
cosh(av/2) 2sinh(zv/ 2)
Hence, for the Melnikov vector M, we obtain
: +
cosh(zv/2) sinh(mv/2)

Mi(to,ﬁo,é',f,v)=—8§i2fmz2|: :lsin(vto +6))
(38)
Then fulfillment of (3) assures existence of simple zero for
M. (,,.86,,56,f,v)=0,
and hence transversal intersection of the asymptotically stable manifold
W*(y..) and asymptotically unstable manifold W"(y,,), whereas the

fulfillment of (30) assures existence of simple zero for
M_(,,8,.90, /,v)=0

and hence transversal intersection of #°(y, ) and W"(y,_). Now, from

Proposition 2 it follows for ¢ > 0 sufficiently small there exists an
integer » > 1 such that the map Pf" has an invariant Cantor set,

subset of the Poincare section ®%, on which the power (Pf") is

conjugate to a full shift of ¥ symbols.
The last implies that high sensitiveness of solution to the
choice of initial conditions, or equivalently deterministic chaos.

5. Conclusion
The analysis shows the following two essential features of the system
considered.
1. There exists a discrete set of possible stationary stable amplitudes,
which can be approximately determined under certain conditions.
2. There exists a threshold value for the amplitude such that for values
above it the discrete states are stable,

The phenomenon of continuous oscillation excitation with amplitude
belonging to a discrete set of stationary amplitudes has been demonstrated
on the basis of a common model — an oscillator under wave influence. It is
shown that the conditions necessary for the manifestation of this
phenomenon are realized in a natural way in an oscillator system interacting
with a continuous electromagnetic wave.

Modeling the system of an oscillating charge under wave influence has
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been considered. It has been shown that the continuous wave with spectral
components, considerably higher than the oscillating charge’s natural
frequency, excites charge oscillations with a quasi-natural frequency and
amplitude belonging to a discrete set of the possible stationary amplitudes,
depending only on the initial conditions. The considered model may be used
for phenomenological investigation of plasma particles with electromagnetic
waves interactions and waves in the Earth ionospherc and planetary
magnetospheres.

In fact the main consequence of Theorem 1 is the strong dependence
of the solution of (28) on the choice of initial conditions. The
phenomenon deterministic chaos arises often in the dynamics of the
driven non-linear oscillators, In this regard our result is not surprising,
Anyway, we think that it is useful to present such a condition for the
parameters of the system which guarantees appearance of a Smale
horseshoe like dynamics, since usually the homoclinic bifurcation (due to
a simple zero of the Melnikov vector) is one of the first bifurcations that
occur in the transition from regular to irregular motion for a given
system. We want to emphasis that the homoclinic tangency (predicted
with a good accuracy by the Melnikov analysis), as a rule, implies
formation of a fractal boundary for the basins of attraction. The last
makes difficult clarifying the global dynamics on specific examples,
The other two types of motion, outlined in section 4, are treated by the
means of the averaging theory using a sub-harmonic Melnikov function.
Our results are subject to a forthcoming paper.
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OCIMJIAITMOHHO-BhJIHOB MOJEJ
KATO HEXOMOTEHHO BOJIEHA THHAMIYHA
CHUCTEMA

Braoumup [Jamzos , Huxonaii Epoxus , ITnavenTpernues
Pe3toMe

Pasrmenan e o0obmeH Mofen Ha OCIUIATOp, HaMMpaml ¢e IIoX
BBHIITHO BWIHOBO BB3feHcTre. [Tokasato €, 4e CHCTEMH C PasIMIHa (PHU3NIECKa
IpUpoa, o0CAMHABAHN OT TO3H MOAE, MPHHALIEKAT KbM [T0-001HMA Kiac " KHK-
BE3OYIMMH  CaMO-ai@ITUBHE  jguHaMuyeM  cucreMu”.  TeopeTsHOTO
Pasriek/IaHe BIIOYBA aHAM3 B YCIIOBHATA HA TOIEMH H MaJIKH aMILTHATY M, T.C.
CIIyuauTe Ha CHIHA M ¢Iaba HeJMEEHHOCT Ha cucTeMara. CTaTHATa PasIieia
CHIIO HUIMYMETO Ha Taka HapeueHara noAxoBa Ha CMein B AWHAMMKATZ Ha
JacTHlla, HaMKpallla ce MO Bh3ACHCTBUETO Ha JIBe BRIHK. To3M npobieM uasa
OT (U3MKATA HA IUIA3MATA, HO JU(EpeHIMAIHHTE YPaBHEHIS, PasISKIaHH B
CTATHATE, MMAT H MHOXECTBO JPYTH NPUITOKEHUS.
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